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Optimal control of maize foliar diseases using the plants population
dynamics

Obiora Cornelius Collins and Kevin Jan Duffy∗

Institute of Systems Science, Durban University of Technology, Durban 4000, South Africa

(Received 13 April 2015; accepted 3 June 2015)

Pathogens and insects can have important negative effects on yields of crops cultivated by humans. These
effects can be important for the food security or financial well-being of individuals. In particular, maize is a
very important staple crop worldwide and is vulnerable to diseases. We formulate here a mathematical
model to evaluate the impacts of foliar diseases on the population dynamics of maize plants. Qualitative
analyses of the important mathematical features of the model are carried out. We show how this
methodology can be extended to reducing the spread of foliar diseases through effective control measures with
minimum costs.
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Introduction

Modern humans predominantly settle permanently
due mostly to the development of agricultural prac-
tices. Pathogens and insects have evolved along-side
plants and are viewed as pests when they reduce
yields, and so controlling such pests is a practice as
old as agriculture (Kingsland 1980). There is increas-
ing appreciation of the crucial role that pathogens
may play in the structure of plant populations and
communities (Vandermeer 1990). The use of
models for understanding the development of epi-
demics has developed from the 1960s into an impor-
tant methodology in understanding plant diseases
(Van Maanen & Xu 2003).
Maize (Zea mays L. ssp. mays), grown commer-

cially or for consumption, is an important crop
worldwide. Many diseases can attack maize
through the leaves of the plant. Generally, epi-
demics occur as the result of interactions among
three factors, the plant population dynamics, the
population dynamics of the pathogens and impacts
from the environment. These basic factors allow
the development and use of population dynamic
models to assess, predict and/or control the
epidemic.

Model development

To improve our understanding of the impact of foliar
diseases on the dynamics of maize plant populations
and to give some indication of how to reduce the
spread of the diseases with minimum cost, we formu-
late a mathematical epidemiological model. We par-
tition the maize plant population into two
categories: a disease-free population of susceptible
maize plants S and a population of infected maize
plants I. P is a population measure of foliar disease
pathogens. Based on these assumptions, we construct
the model

dS
dt

= L− bS(t)P(t) − m1S(t),

dI
dt

= bS(t)P(t) − m2I(t), (1)

dP
dt

= sI(t) − (d − b)P(t),

with initial conditions: S(0) . 0, I(0) ≥ 0, P(0) ≥ 0.
For simplicity, we let j = d − b . 0 be the net
decay rate of P(t). The meaning of variables and par-
ameters are given in Table 1. Note that the total
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maize plant population at any time t is given by
N(t) = S(t) + I(t).

Model analysis

The foliar disease-free equilibrium (DFE) point of
model (1) is given by

(S0, I0,P0) = (L/m1, 0, 0). (2)

Threshold quantity (the basic reproduction
number R0)

To analyze the stability of this equilibrium point, we
consider a threshold quantity known as the basic
reproduction number. The basic reproduction
number measures the expected number of secondary
infections that result from a single infected maize
plant in a maize plant population made up entirely
of susceptible plants. We compute the basic repro-
duction number R0 of model (1) using the next-gen-
eration matrix approach of van den Driessche and
Watmough (2002), given by

R0 = bsL

m1jm2
. (3)

Stability analysis of the DFE

The stability of the DFE determines the short-term
dynamics of a disease (Liao and Wang 2011). There-
fore, to determine the short-term dynamics of maize
foliar disease, it is necessary to investigate the stability
of the DFE.

THEOREM 1 The DFE of model (1) is locally asymp-
totically stable provided that R0 , 1.
Proof
We show that all the eigenvalues of the Jocobian of

model (1) evaluated at the DFE have negative real
parts. The Jacobian matrix J0 of model (1) evaluated
at the DFE is

J0 =
m1 0 −bS0

0 −m2 bS0

0 s −j 0

⎛
⎝

⎞
⎠. (4)

The Jacobian matrix J0 has three distinct eigen-
values given by

l1 = −m1,

l2 = 1
2

−(m2 + j) −
�����������������������������
(m2 + j)2 + 4jm2(R0 − 1)

√[ ]
,

l3 = 1
2

−(m2 + j) +
�����������������������������
(m2 + j)2 + 4jm2(R0 − 1)

√[ ]
.

It is obvious that all these eigenvalues are negative
if R0 , 1, thus completing the proof.▪
This result implies that foliar diseases can be elimi-

nated if the initial size of the infected plants is in the
basin of attraction of the DFE. On the other hand,
the disease will be established if R0 . 1. To ensure
that disease elimination is independent of the initial
population size of infected plants, it is necessary to
show that the DFE is globally stable. The proof of
global stability will be established using a global stab-
ility result by Castillo-Chavez et al. (2002) which is
stated in Lemma 2.
LEMMA 2. Consider a model system written in the form

dX1

dt
= F(X1,X2),

dX2

dt
= G(X1,X2), G(X1, 0) = 0,

(5)

where X1 [ Rm and X2 [ Rn. X0 = (X∗
1 , 0) denotes the

disease-free equilibrium of the system. Assume that

(H1). For dX1/dt = F(X1, 0), X∗
1 is globally

asymptotically stable.

(H2). G(X1,X2) = AX2 − Ĝ(X1,X2), Ĝ(X1,X2)
≥ 0 for (X1,X2) [ V, where the Jacobian
A = (∂G/∂X2)(X1, 0) is an M-matrix (the off diag-
onal elements of A are non-negative) and V is the
region where the model makes biological sense.

Then, the DFE X0 is globally asymptotically stable pro-
vided that R0 , 1 (Castillo-Chavez et al. 2002).
THEOREM 3 The DFE of model (1) is globally asymp-

totically stable provided that R0 , 1.

Table 1. Variables and parameters for model (1).

Variables Meaning Unit

N(t) Total number of maize plants plants ha−1

S(t) Susceptible maize plants plants ha−1

I(t) Infected maize plants plants ha−1

P(t) Measure of foliar disease
pathogens

cells ha−1

L Recruitment rate into S(t) plants ha−1

day−1

b Contact rate of maize plants
with P(t)

ha cells−1

day−1

j Net decay rate of pathogens day−1

s Contributions of I(t) to the
growth of P(t)

cells plants−1

day−1

m1 Death rate of S(t) day−1

m2 Death rate of I(t) due to foliar
pathogens

day−1
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Proof We only need to show that the conditions (H1)
and (H2) hold when R0 , 1. In our model (1), we
have X1 = S, X2 = (I,P). The system

dX1

dt
= F(X1, 0) = L− m1S(t) (6)

is linear and its solution can be easily found as
S(t) = S0 + (S(0) − S0)e−m1t. Clearly, S(t) � S0 as
t � 1 regardless of the values of the initial condition.
Thus, X0

1 is globally asymptotically stable. Mean-
while

dX2

dt
= G(X1,X2) = bS(t)P(t) − m2I(t)

sI(t) − jP(t)
( )

. (7)

We obtain

A = −m2 bS0

s −j

( )
, (8)

which is obviously an M-matrix with non-negatives
off the diagonal elements. Thus, we find

Ĝ(X1,X2) = bP(S0 − S)
0

( )
. (9)

However, Ĝ(X1,X2) ≥ 0, since S0 ≥ S. This com-
pletes the proof. Biologically, this implies that foliar
disease can be eliminated irrespective of the initial
population of infected maize plants provided
R0 , 1.▪

Endemic dynamics of foliar diseases

When R0 . 1, a unique endemic equilibrium (EE)
exists for model (1), that is an equilibrium that
includes diseased populations, and is given by

(Se, Ie, Pe) = jm2

sb
,
L− m1S

e

m2
,
sIe

j

( )
. (10)

The stability analysis of this EE describes the
long-term dynamics of the maize plant population
dynamics. However, the analytical analysis necessary

is complex and so we investigate the EE numeri-
cally. For the numerical simulations, we consider
theoretical field trials with spacings of 0.9 m
between the rows and 0.3 within the rows. Two
seeds are planted per station and thinned down to
one plant at three weeks after seedling emergence.
So, each row has a maximum potential resulting in
a total population of 44,000 plants per ha. The
trials are rain-fed and harvest is done at a physio-
logical maturity of 151 days after planting. Most of
the parameters are extracted from published data
while the remaining are estimated such that they
lie within realistic parameter ranges. The recruit-
ment rate L is estimated as the product of the ger-
mination rate and the initial number of maize
plants. Germination rate = 0.95 is extracted from
corn newsletters (Newsletters 2015). According to
the newsletters, the survival rates for corn is in the
range of 85% to 95% but can vary considerably
depending on planting conditions and other
environmental factors (Newsletters 2015). Based
on these, the death rates will lie in the range of 5–
15%. So, we take the death rate m1 = 0.5/151 and
m2 = 0.15/151, where 151 is the number of days
to maturity. By a similar approach, we estimated b
from Fajinmi et al. (2012). These parameter values
together with other parameter values can be found
in Table 2. Numerical solutions of model (1)
when R0 . 1 using the parameter values are given
in Figure 1.

Outbreak growth rate

If R0 . 1, then the DFE becomes unstable and a
disease outbreak is likely to occur in the maize plant
population. The positive (dominant) eigenvalue of

Table 2. Parameter values.

Variables Value Source

L 276.8212 estimate
b 0.0024 Fajinmi et al. (2012)
j 0.85 estimate
s 0.0018 estimate
m1 3.3113× 10−4 Newsletters (2015)
m2 9.9338× 10−4 Newsletters (2015) Figure 1. Graphical representation of the maize plants population

dynamics in the absence of any control measure.
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the Jacobian at the DFE is referred to as the initial
outbreak growth rate (Tien & Earn 2010). From
the eigenvalues of the Jocobian J0, we can see that
l1 and l2 are negative. Thus, the positive (dominant)
eigenvalue is given by

l+ = l3. (11)

The epidemiological implications of this are that
when there is no control measure to reduce the
spread of an infection with R0 . 1, then an outbreak
will occur in the entire population and will grow at a
rate l+. Note that if R0 , 1, then all the three eigen-
values become negative confirming the result in
Theorem 1. We also notice that if R0 = 1, the out-
break growth rate l+ vanishes.
Figure 1 gives a graphical representation of the

maize plant population dynamics in the absence of
any control measure. From the figure, infected
maize plants are increasing while the disease-free
maize plants are decreasing. Thus, it is necessary to
consider introducing control measures that can
reduce the spread of foliar disease.

The control model

We consider an Integrated ControlManagement Prac-
tices. These management practices incorporate many
practical methods of disease control. These measures
include chemical control, biological control, plant
resistance, preventive control and cultivation control.
For the model, we assume that using disease resistance
maize seeds reduces susceptibility to disease at a rate f
and with efficacy 1. Similarly, traditional practices
reduces P at a rate u and I at a rate t. Based on
these assumptions, we obtain the control model below:

dS
dt

= L− bS(t)P(t) − m1S(t) − fS(t) + tI(t),
dC
dt

= fS(t) − (1− 1)bC(t)P(t) − m3C(t),
dI
dt

= bS(t)P(t) + (1− 1)bC(t)P(t) − (m2 + t)I(t),
dP
dt

= sI(t) − (j+ u)P(t).
(12)

Figure 2. Plot showing effects of control measures on the plants population dynamics.
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The DFE of the control model is given by

(S0
c , C0

c , I0c , P0
c ) = (L/(m1 + f), fS0

c /m3, 0, 0).
(13)

The basic reproduction number Rc
0 of the control

model is given by

Rc
0 =

bs(S0
c + (1− 1)C0

c )
(u+ j)(m2 + t) . (14)

Clearly, Rc
0 , R0. This shows that based on our

model formulations, introduction of controls has the
capacity of reducing the number of secondary infec-
tions. The relative impact of each of the control
measures is determined using numerical simulation
with the parameter values in Table 2 and the following
parameter values for the control measures:
t = 10 ∗ m2, 1 = 0.78, f = 0.75, u = 5 ∗ j. The
simulations are presented in Figure 2(a)–(c). Based
on our formulation, the figures reveal that each of
the control measures has significant effects in reducing
the spread of foliar diseases.
Use of fungicides may result in higher grain moist-

ure. This can lead to increased costs associated with
drying. So, it is important to investigate the best
approach to reduce disease with minimum cost. To
determine how to do so, we consider an optimal
control problem.

The optimal control problem

To minimize the cost of implementing the controls,
we assume that the control parameters f, t, u in the
control model are measurable functions of time and
then formulate an appropriate optimal control func-
tional that minimizes the cost of implementing the
controls subject to the control model (12). For sim-
plicity, we let f = u1(t), t = u2(t), u = u3(t). There-
fore, the control scheme is said to be optimal if it
minimizes the objective functional

J(u1, u2, u3) =
∫tf
0
(A1S(t) + A2I(t) + A3P(t)

+ c1u21(t) + c2u22(t) + c3u23(t)dt)
(15)

subject to the control model, where tf is the final
time and the coefficients A1,A2,A3, c1, c2, c3 are bal-
ancing cost coefficients. The performance specifica-
tion involves minimizing the number of infected
maize plants and foliar pathogen, as well as the
costs for applying the controls. We consider quadra-
tic functions for measuring the control cost (Agusto

2009; Miller Neilan et al. 2010; Tchuenche et al.
2011).
The Pontryagins Maximum Principle (Pontryagin

et al. 1986) introduces adjoint functions that enable
us to combine the state system to the objective func-
tional. This principle converts the problem of mini-
mizing the objective functional subject to the state
system into a problem of pointwise minimizing a
Hamiltonian H, with respect to u1(t), u2(t) and
u3(t). The Hamiltonian for the objective functional
and the state system is given by

H = A1S(t) + A2I(t) + A3P(t) + c1u21(t) + c2u22(t)
+ c3u23(t) + lS(L− bS(t)P(t) − m1S(t) − u1(t)S(t)
+ u2(t)I(t)) + lC(u1(t)S(t) − (1− 1)bC(t)P(t)
− m3C(t)) + lI (bS(t)P(t) + (1− 1)bC(t)P(t)
− (m2 + u2(t))I) + lP (sI(t) − (j+ u3(t))P(t)).

(16)

Given an optimal control triple (u∗1, u∗2, u∗3) together
with corresponding states (S∗

c ,C
∗
c , I

∗
c ,P

∗
c ) that mini-

mizes J(u1, u2, u3) over U , there exists adjoint vari-
ables lS, lC, lI and lP satisfying

dlS
dt

=−A1+lS(bP(t)+m1+u1(t))−lCu1(t)−lIbP(t)
dlC
dt

=lC((1−1)bP(t)+m3)−lI (1−1)bP(t)
dlI
dt

=−A2+lSu2(t)+lI (m2+u2(t))−lPs

dlP
dt

=−A3+lSbS(t)+lC(1−1)bC(t)

−lI (bS(t)+(1−1)bC(t))+lP (j+u3(t)).
(17)

Together with transversality conditions:

lk(tf ) = 0 for k = S,C, I,P . (18)

The differential equations governing the adjoint
variables were obtained by differentiating the Hamil-
tonian function with respect to the corresponding
states as follows:

dlk
dt

= −dH/dt. (19)

Consider now the optimality conditions

0 = dH
du1

, 0 = dH
du2

, 0 = dH
du3

. (20)

24 O.C. Collins and K.J. Duffy
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By solving for u1 in the optimality conditions and
subsequently taking bounds into considerations, we
obtain

u∗1 = min(1,S(lS − lC)/2c1). (21)

By a similar reasoning, we obtain

u∗2 = min(1, I(lI − lS)/2c2),
u∗3 = min(1,PlP/2c3).

(22)

These results demonstrate the existence of an
optimal control triple (u∗1, u∗2, u∗3) that can reduce the
spread of foliar disease with minimum cost. Since
the optimal control triple is parameter dependent,
we use numerical simulations to determine their
magnitudes for the period of the outbreak.

Numerical examples

The numerical solution of the optimal control
triple is obtained with parameter values from
Table 2 together with the following cost
factors: A1 = 6.00, A2 = 2.00, A3 = 100.00,
C1 = 10.00,C2 = 10.00, S(0) = 10.000. We used
the forward–backward algorithm of Lenhart and
Workman (2007) and Miller Neilan et al. (2010) to
obtain the optimal control triple that minimizes the
cost functional. To achieve optimal cost control, the
control measures are maximally applied at first but
reduced toward harvest. This suggests that effective
optimal controls should be applied from the onset
of the outbreak. A numerical illustration of the
number of infected maize plants in the presence or
absence of control or with optimal control is pre-
sented in Figure 3.

Discussion

This study investigated the impacts of foliar diseases
on maize plant population dynamics and also evalu-
ated how to reduce the spread of maize foliar diseases
with minimum cost. For this, a deterministic differ-
ential equation model was developed to consider
the importance of such epidemics.
First, we formulated an epidemiological model and

analyses of this model revealed that foliar disease can
spread without bound. Second, we incorporated
control measures into the model and show how
these can have significant effects in reducing the
spread of the disease.
However, controlling diseases requires cost. Since

most farmers need to optimize yields for profit, or
for their own use, we investigated how to reduce the
spread of diseases with minimum cost. For this we
formulated an optimal control problem. Qualitative
analyses suggest that introducing the control
measure at the outset of the outbreak can reduce
the spread of the diseases with minimum cost.
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